134 research outputs found

    The Question of Competence: Reconsidering Medical Education in the Twenty-First Century

    Get PDF
    [Excerpt] The real challenge for those involved in designing competency-based educational programs is to recognize the complexity of competence as a concept. Only then can they effectively delineate the knowledge, skills, and attitudes that learners must acquire to be able to perform within each domain at a predetermined level and to recognize that the expected level of performance within each domain will vary depending on the learner\u27s stage of education and the specialty he or she is learning. The authors of this book help us do just that. They examine the challenges facing medical education and introduce the concept of discourse as a mechanism both for examining the idea of competence and considering how to implement competency-based education. In so doing, they provide us with a new way to ask the questions that are at the heart of every report advocating change, every criticism of medical education, and every conversation that questions why health care is the way it is today

    Creating the Health Care Team of the Future: The Toronto Model for Interprofessional Education and Practice

    Get PDF
    [Excerpt] In 2000, the Institute of Medicine\u27s landmark report To Err Is Human launched the contemporary patient safety movement with its clarion call to the health care systems all over the globe to act to prevent the errors that kill over 100,000 patients a year and harm many thousands more in the United States alone. Ten years later, in 2010, the World Health Organization\u27s (WHO) Framework for Action on Interprofessional Education and Collaborative Practice was released, as was the Lancet Commission report Health Professionals for a New Century: Transforming Education to Strengthen Health Systems in an Interdependent World. In fact, over the past decade or more, studies have documented that, far from improving, in countries such as the United States and Canada, there has been little progress in preventing patient deaths and harm. Original calculations such as those done by the Institute of Medicine in 2000 are now considered to have been dramatic underestimations of the harm done to patients in health care institutions around the world. Although the complexity of today\u27s high-tech health care systems is often used as a rationalization for the maintenance of the status quo, all these groundbreaking reports argue that team-based, or interprofessional, care is a key strategy to move our current underperforming health care systems toward a more safe, efficient, integrated, and cost-effective model. Contemporary health care institutions do indeed have a bewildering number of players. Despite this, the responsibility for ensuring that patients receive the right care at the right time from the right providers relies on a few basic principles: Practitioners need to understand they are part of a diverse team. Practitioners must communicate effectively with the patient and family, as well as with other members of their team. Practitioners need to know what other team members do to limit duplication and prevent gaps in care. Practitioners need to know how to work together to optimize care so that the patient journey from inpatient care to home care, or from primary care to the specialist clinic is experienced as seamless. Since 2000, the eleven health professional programs at the University of Toronto and the forty-nine teaching hospitals associated with them have developed an Interprofessional Education and Care (IPE/C) program that begins in the first year of a health professional student\u27s entry into his or her program, continues through various educational activities throughout their studies, and straddles the education/practice divide. Over the past decade, the university and teaching hospital partners have been engaged in the co-development and support of the IPE curriculum for learners. They are also investing in the development of faculty and the ongoing training of staff to support and model collaborative practice and team-based care. What we have come to think of as the Toronto Model is integrated across all sites and professions and includes classroom, simulation, and practice education

    Comparative Gas-Exchange in Leaves of Intact and Clipped, Natural and Planted Cherrybark Oak (Quercus pagoda Raf.) Seedlings

    Get PDF
    Gas-exchange measurements, including CO2 -exchange rate (net photosynthesis), stomatal conductance, and transpiration, were conducted on intact and clipped cherrybark oak (Quercus pagoda Raf.) seedlings growing in the field and in a nursery bed. Seedlings in the field, released from midstory and understory woody competition, showed significant increases in gas-exchange compared to non-released seedlings due to increases in light levels reaching seedlings. Concurrently, little difference occurred in the CO2 -exchange rate between intact and clipped seedlings in the released treatment although clipped seedlings maintained a consistently greater rate of stomatal conductance. In order to reduce the high variability of light levels recorded in the field, gas-exchange measurements were conducted on intact and clipped cherrybark oak seedlings growing in a nursery bed under consistent light conditions. Again, no differences were found in the CO2 - exchange rate between intact and clipped seedlings. Furthermore, no differences were found in stomatal conductance and transpiration between intact and clipped seedlings. However, significant differences in gas-exchange were found between first-flush and second-flush leaves regardless of seedling treatment (intact or a sprout). Greater rates of gas-exchange in second-flush leaves can be attributed to developing third-flush steams and leaves

    Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 118 (2013): 1333–1341, doi:10.1002/jgrf.20091.Detrital mineral thermochronology of modern sediments is a valuable tool for interrogating landscape evolution. Detrital zircon (U-Th)/He thermochronology is of particular interest because zircons are durable and withstand transport in glacial and fluvial systems far better than, for example, apatite. However, because of the time-intensive nature of conventional zircon (U-Th)/He thermochronology, most previous studies of this kind have relied on data for a few tens of grains, even though conventional wisdom holds that a substantially larger number is necessary for a robust characterization of the population of cooling ages in a sample. Here, we introduce a microanalytical approach to detrital zircon (U-Th)/He thermochronology that addresses many factors that can complicate the interpretation of conventional zircon (U-Th)/He data, particularly with respect to alpha ejection and injection and U + Th zoning. In addition, this technique permits the effective dating of naturally abraded and broken grains, and, therefore, lessens the potential for sampling bias. We apply both conventional and laser microprobe techniques to a detrital sample from the Ladakh Range in the northwestern Indian Himalaya, showing that the two yield very similar principal modes of apparent ages. However, the laser microprobe data yield a broader spectrum of ages than that of the conventional data set, which we interpret to be caused by bias related to the selection requirements for zircons used for conventional dating. This method thus provides a time-efficient route to obtaining a higher-resolution distribution of dates from a single sample, which will, in turn, yield higher-fidelity constraints regarding catchment-wide erosion rates for surface process studies.Funding for this project was provided by NSF EAR-0642731, awarded to KVH and a Lewis and Clark Grant awarded to AT-L.2014-01-2

    A transcription of Vivaldi's violin concerto RV 208 for cello

    Get PDF
    "Chapter I includes an introduction to the history of this work and its series of transcriptions, as well as related research on the topic. Chapter II explains how this present transcription came to be. Chapter III delves into the methodology of how this transcription was created. The document concludes with the completed concerto for cello. The aim was to finish work begun by Luigi Silva as contained in the Cello Collection housed in the Special Collections Division of Jackson Library at University of North Carolina Greensboro, but in the end, an entirely new transcription was created to add to the cello repertoire."--Abstract from author supplied metadata

    Real-Time Monitoring of Aluminum Oxidation Through Wide Band Gap MgF2 Layers for Protection of Space Mirrors

    Get PDF
    Because of its extraordinary and broad reflectivity, aluminum is the only logical candidate for advanced space mirrors that operate deep into the UV. However, aluminum oxidizes rapidly in the air, and even a small amount of oxide (as little as a nanometer) can have a noticeable, detrimental impact on its reflectivity at short wavelengths. Thin films of wide band gap materials like MgF2 have previously been used to protect aluminum surfaces. Here we report the first real-time, spectroscopic ellipsometry (SE) study of aluminum oxidation as a function of MgF2 over layer thickness, which ranged from 0 – 6 nm. SE data analysis was performed vis-à-vis a multilayer optical model that included a thick silicon nitride layer. The optical constants for evaporated aluminum were initially determined using a multi-sample analysis (MSA) of SE data from MgF2 protected and bare Al surfaces. Two models were then considered for analyzing the real-time data obtained from Al/MgF2 stacks. The first used the optical constants of aluminum obtained in the MSA with two adjustable parameters: the thicknesses of the aluminum and aluminum oxide layers. The thicknesses obtained from this model showed the expected trends (increasing Al2O3 layer thickness and decreasing Al layer thickness with time), but some of the Al2O3 thicknesses were unphysical (negative). Because the optical constants of very thin metals films depend strongly on their structures and deposition conditions, a second, more advanced model was employed that fit the optical constants for Al, and also the Al and Al2O3 thicknesses, for each data set. In particular, the Al and Al2O3 thicknesses and optical constants of Al were determined in an MSA for each of 50 evenly spaced analyses in each four-hour dynamic run performed. The resulting optical constants for Al were then fixed for that sample and the thicknesses of the Al and Al2O3 layers were determined. While the first and second models yielded similar Al and Al2O3 thickness vs. time trends, the film thicknesses obtained in this manner were more physically reasonable. Thicker MgF2 layers slow the oxidation rate of aluminum. The results from this work should prove useful in protecting space mirrors prior to launch

    Relationship of cognitive function in patients with schizophrenia in remission to disability: a cross-sectional study in an Indian sample

    Get PDF
    Background: Cognitive deficits in various domains have been consistently replicated in patients with schizophrenia. Most studies looking at the relationship between cognitive dysfunction and functional disability are from developed countries. Studies from developing countries are few. The purpose of the present study was to compare the neurocognitive function in patients with schizophrenia who were in remission with that of normal controls and to determine if there is a relationship between measures of cognition and functional disability. <p/>Methods: This study was conducted in the Psychiatric Unit of a General Hospital in Mumbai, India. Cognitive function in 25 patients with schizophrenia in remission was compared to 25 normal controls. Remission was confirmed using the brief psychiatric rating scale (BPRS) and scale for the assessment of negative symptoms (SANS). Subjects were administered a battery of cognitive tests covering aspects of memory, executive function and attention. The results obtained were compared between the groups. Correlation analysis was used to look for relationship between illness factors, cognitive function and disability measured using the Indian disability evaluation and assessment scale. <p/>Results: Patients with schizophrenia showed significant deficits on tests of attention, concentration, verbal and visual memory and tests of frontal lobe/executive function. They fared worse on almost all the tests administered compared to normal controls. No relationship was found between age, duration of illness, number of years of education and cognitive function. In addition, we did not find a statistically significant relationship between cognitive function and scores on the disability scale. <p/>Conclusion: The data suggests that persistent cognitive deficits are seen in patients with schizophrenia under remission. The cognitive deficits were not associated with symptomatology and functional disability. It is possible that various factors such as employment and family support reduce disability due to schizophrenia in developing countries like India. Further studies from developing countries are required to explore the relationship between cognitive deficits, functional outcome and the role of socio-cultural variables as protective factors

    Mapping the Interacting Regions between Troponins T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC

    Get PDF
    Muscular contraction is triggered by an increase in calcium concentration, which is transmitted to the contractile proteins by the troponin complex. The interactions among the components of the troponin complex (troponins T, C, and I) are essential to understanding the regulation of muscle contraction. While the structure of TnC is well known, and a model for the binary TnC·TnI complex has been recently published (Tung, C.-S., Wall, M. E., Gallagher, S. C., and Trewhella, J. (2000)Protein Sci. 9, 1312–1326), very little is known about TnT. Using non-denaturing gels and NMR spectroscopy, we have analyzed the interactions between TnC and five peptides from TnT as well as how three TnI peptides affect these interactions. Rabbit fast skeletal muscle peptide TnT-(160–193) binds to TnC with a dissociation constant of 30 ± 6 µm. This binding still occurs in the presence of TnI-(1–40) but is prevented by the presence of TnI-(56–115) or TnI-(96–139), both containing the primary inhibitory region of TnI. TnT-(228–260) also binds TnC. The binding site for TnT-(160–193) is located on the C-terminal domain of TnC and was mapped to the surface of TnC using NMR chemical shift mapping techniques. In the context of the model for the TnC·TnI complex, we discuss the interactions between TnT and the other troponin subunits
    • …
    corecore